
Nontrivial velocity distributions in inelastic gases

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys. A: Math. Gen. 35 L147

(http://iopscience.iop.org/0305-4470/35/11/103)

Download details:

IP Address: 171.66.16.106

The article was downloaded on 02/06/2010 at 09:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/35/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 35 (2002) L147–L152 PII: S0305-4470(02)33044-0

LETTER TO THE EDITOR

Nontrivial velocity distributions in inelastic gases

P L Krapivsky1 and E Ben-Naim2

1 Center for Polymer Studies and Department of Physics, Boston University, Boston,
MA 02215, USA
2 Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory,
Los Alamos, NM 87545, USA

Received 23 January 2002
Published 8 March 2002
Online at stacks.iop.org/JPhysA/35/L147

Abstract
We study spatially homogeneous inelastic gases using the Boltzmann equation.
We consider uniform collision rates and obtain analytical results valid for
arbitrary spatial dimension d and arbitrary dissipation coefficient ε. In the
unforced case, we find that the velocity distribution decays algebraically,
P(v, t) ∼ v−σ , for sufficiently large velocities. The exponent σ(d, ε) exhibits
nontrivial dependence on the spatial dimension and the dissipation coefficient.

PACS numbers: 05.20.Dd, 05.40.−a, 45.70.Mg, 47.70.Nd

Granular gases present novel challenges, previously not encountered in fluid dynamics [1].
Specifically, the strong underlying energy dissipation leads to clustering instabilities and strong
velocity correlations [2–7]. A series of recent experimental and theoretical studies reveals a rich
phenomenology. In particular, velocities are characterized by anomalous statistics, sensitive
to the details of the driving conditions, the density and the degree of dissipation [8–12].

Kinetic theory provides a systematic framework for deriving macroscopic properties from
the microscopic collision dynamics [13–15]. Yet, analysis of the corresponding Boltzmann
equation often involves uncontrolled approximations or use of nearly Maxwellian distributions.
Motivated by the latter issue, we examine both unforced and forced inelastic gases using a
simplified Boltzmann equation. Specifically, we employ Maxwell’s collision rate, which
is proportional to the typical velocity rather than the relative velocity [16]. The resulting
Boltzmann equation is analytically tractable, as reported in a few recent studies [17–19].

This kinetic theory leads to interesting behaviours in the freely evolving case. In one
dimension, while moments of the velocity distribution exhibit multiscaling [17], the velocity
distribution itself still approaches a scaling form with an algebraic large-velocity tail [18].
An algebraic tail was also found numerically in two dimensions [18]. Here, we show
analytically that in an arbitrary spatial dimension the velocity distribution admits a scaling
solution with an algebraic large-velocity tail. The corresponding exponent, a root of a
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transcendental equation, depends on the spatial dimension and the restitution coefficient. In
the driven case, we find that the velocity distribution is non-Maxwellian.

Our starting point is a homogeneous system of identical inelastic spherical particles in
arbitrary spatial dimension d . The mass and the cross-section are set to unity without loss
of generality. When two particles collide, the normal component of the relative velocity is
reduced by the restitution coefficient r = 1 − 2ε, while the tangential component remains the
same. Denoting by n the impact direction, the unit vector connecting the centres of the two
particles, the post-collision velocities v1,2 are given by a linear combination of the precollision
velocities u1,2,

v1,2 = u1,2 ∓ (1 − ε) (g · n)n, (1)

with the relative velocity g = u1 − u2. The energy dissipated in a collision equals
�E = −ε(1 − ε)(g · n)2. When ε = 0 collisions are elastic, while when ε = 1/2 collisions
are perfectly inelastic with maximal energy dissipation.

Let P(v, t) be the normalized density of particles with velocity v at time t . Assuming
molecular chaos or perfect mixing, we arrive at the following Boltzmann equation for the
velocity distribution:
∂P (v, t)

∂t
= 〈g〉

∫
dn

∫
du1

∫
du2 P(u1, t) P (u2, t)

× {δ[v − u1 + (1 − ε)(g · n)n] − δ(v − u1)}. (2)

The collision rate in the Maxwell approximation represents the typical velocity scale, 〈g〉 =√
T , with T = (1/d)〈v2〉 the ‘granular temperature’ or the average kinetic energy per degree

of freedom (for hard spheres, the collision rate equals the actual relative velocity g · n).
This evolution equation naturally describes a stochastic process where randomly chosen pairs
of particles undergo inelastic collisions according to (1) with a randomly chosen impact
direction n. In writing equation (2) we tacitly ignored the restriction g · n > 0 on the
integration range, because the integrand obeys the reflection symmetry n → −n. The
integration measure should be normalized,

∫
dn = 1.

In the absence of energy input the system ‘cools’ indefinitely according to Haff’s law [20].
Indeed, the time dependence of the temperature is found from the Boltzmann equation (2) to
give (d/dt)T = −λT 3/2 with λ = 2ε(1 − ε)

∫
dn n2

1 (the first axis was conveniently chosen
to be parallel to g). Since n2

1 + · · · + n2
d = 1 and

∫
dn = 1 one has λ = 2ε(1 − ε)/d. Thus,

the temperature decays according to T (t) = T0 (1 + t/t0)−2, with the initial temperature T0

and the characteristic timescale t0 = d/[ε(1 − ε)
√
T0]. The temperature quantifies velocity

fluctuations. In the following, we focus on the natural case of isotropic velocity distributions.
We shall show that asymptotically, the temperature represents the only relevant velocity scale
as the velocity distribution approaches the scaling form

P(v, t) ∼ 1

T d/2
P

(
v√
T

)
. (3)

Given the convolution structure of the Boltzmann equation (2), we introduce F(k, t), the
Fourier transform of the velocity distribution function, F(k, t) = ∫

dv eik·v P(v, t). Applying
the Fourier transform to equation (2) and integrating over the velocities gives

1√
T

∂

∂t
F (k, t) + F(k, t) =

∫
dnF [k − q, t]F [q, t], (4)

with q = (1 − ε)(k · n)n. This rate equation reflects the momentum transferred between
particles during collisions. We seek an isotropic scaling solution for the Fourier transform, the
equivalent of (3),

F(k, t) = �(k2T ), (5)
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with k ≡ |k|. In the k → 0 limit, the Fourier transform, F(k, t) ∼= 1 − (1/2) k2 T , implies
that the first two terms in the Taylor expansion of the corresponding scaling function�(x) are
universal, �(x) ∼= 1 − (1/2)x.

Let us first consider the simpler one-dimensional case. Equation (4) reduces to
(1/

√
T )(∂/∂t)F (k, t) + F(k, t) = F [εk, t]F [k − εk, t] and the scaling function (5) satisfies

−λx�′(x) + �(x) = �[ε2x]�[(1 − ε)2x] [17]. This equation admits a very simple
solution [18]

�(x) = [1 +
√
x] e−√

x. (6)

The inverse Fourier transform gives the scaling function of the velocity distribution as a squared
Lorentzian

P(w) = 2

π

1

(1 + w2)2
. (7)

Therefore, the form of the scaling solution (7) is universal as it is independent of the dissipation
degree. Another important feature is the algebraic tail of the velocity distribution, P(w) ∼ w−4

as w → ∞.
We now return to the general d-dimensional case. Substituting (5) into (4) and using

the temperature cooling equation (d/dt)T = −λT 3/2 one finds that the scaling function�(x)
satisfies�(x)−λx�′(x) = ∫

dn�(ξx)�(ηx), where ξ = 1−(1−ε2)n2
1 and η = (1−ε)2n2

1.
To integrate over the impact direction n we use spherical coordinates and treat the first axis as
the polar axis, n1 = cos θ . The θ -dependent factor of the measure is dn = N−1(sin θ)d−2 dθ
with the factor N = ∫ π

0 (sin θ)d−2 dθ = B((1/2), (d − 1)/2) ensuring proper normalization
(B(a, b) is the beta function). Usingµ = cos2 θ as the integration variable, the above governing
equation for the scaling function reads

−λ x �′(x) +�(x) =
∫ 1

0
Dµ �(ξx) �(ηx), (8)

where ξ ≡ ξ(ε, µ) = 1 − (1 − ε2)µ and η ≡ η(ε, µ) = (1 − ε)2µ. Additionally,
the integration measure was re-written using Dµ, defined via B(1/2, (d − 1)/2)Dµ =
µ−(1/2) (1 −µ)(d−3)/2 dµ (it remains normalized,

∫ 1
0 Dµ = 1). In the elastic case, the velocity

distribution is Maxwellian. Indeed, ξ+η = 1 andλ = 0 when ε = 0, and thence�(x) = e−x/2.
Our primary goal is to determine statistics of extremely fast particles, namely the tail of

the velocity distribution. This can be accomplished by noting that the large-v behaviour of
the velocity distribution is reflected by the small-k behaviour of its Fourier transform. For
example, the small-x expansion of the one-dimensional solution (6) contains both regular and
singular terms: �(x) = 1 − (1/2) x + (1/3) x3/2 + · · ·, and the dominant singular x3/2 term
reflects the w−4 tail of P(w). In general, an algebraic tail of the velocity distribution (3),

P(w) ∼ w−σ when w → ∞, (9)

indicates the existence of a singular component in the Fourier transform,

�sing(x) ∼ x(σ−d)/2 when x → 0, (10)

and vice versa. This is seen by recasting the Fourier transform�(x) ∝ ∫ ∞
0 dwwd−1P(w)eiw

√
x ,

into the Laplace transform I (s) ∝ ∫ ∞
0 dwwd−1P(w)e−ws using x = −s2. The small-s

expansion of the integral I (s) contains regular and singular components. For example, when
σ < d , the integral I (s) diverges as s → 0 and integration over large w yields the dominant
contribution Ising(s) ∼ sσ−d . When d < σ < d + 1, I (0) is finite, but the next term is the
above singular term, so I (s) = I (0) + Ising(s) + · · ·. In general, the singular contribution is
Ising(s) ∼ sσ−d , thereby leading to the singular term of equation (10).
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The exponent σ can now be obtained by inserting �(x) = �reg(x) + �sing(x) into
equation (8) and equating the dominant singular terms. Combining �reg(0) = 1 with the
anticipated leading singular term of equation (10), we find that the exponent σ is a root of the
following integral equation:

1 − λ
σ − d

2
=

∫ 1

0
Dµ [ξ (σ−d)/2 + η(σ−d)/2]. (11)

This equation has a trivial solution σ = d + 2, following from the identity
∫ Dµ (ξ+η) = 1−λ,

where the singular and the regular components simply coincide, x(σ−d)/2 = x. Since we seek
the leading singular term, the solution of equation (11) must therefore satisfy σ > d + 2.

The integral equation (11) can be written explicitly in terms of special functions

1 − ε(1 − ε)
σ − d

d
= 2F1

[
d − σ

2
,

1

2
; d

2
; 1 − ε2

]
+ (1 − ε)σ−d '((σ − d + 1)/2)'(d/2)

'(σ/2) '(1/2)
,

(12)

with 2F1(a, b; c; z) the hypergeometric function [21]. Interestingly, the exponent σ ≡ σ(d, ε)

is a root of the transcendental equation (12) and thence it depends in a nontrivial fashion on
spatial dimension d and the dissipation parameter ε.

We first consider the dependence on the dissipation parameter by considering the quasi-
elastic limit ε → 0. As discussed above, in the elastic case the velocity distribution is
Maxwellian and the Fourier transform is simply3 �(x) = e−x/2. This implies a diverging
exponent σ → ∞ as ε → 0. Therefore, the right-hand side of equation (12) vanishes, and the
leading behaviour is

σ � d

ε
as ε → 0. (13)

One can further expand σ(d, ε) in the ε → 0 limit to find σ(d, ε) = d ε−1 + a1(d) ε
−1/2 +

a2(d)+· · ·. We merely quote the leading correction in the physically relevant spatial dimensions
a1(2) = −2(e−2 + 1)/

√
π and a1(3) = −√

3π/2. Clearly, the quasi-elastic limit is singular.
Dissipation, even if minute, seriously changes the nature of the system [6, 22].

Next, we discuss the dependence on the dimension. First, one can verify that σ = 4 when
d = 1 using the identity 2F1(a, b; b; z) = (1−z)−a . The case d = 1 is unique in that the entire
scaling function and in particular the exponent are not dependent on ε. The case of d → ∞
is similar to the ε = 0 case in that the inelastic nature of the collisions becomes irrelevant, the
velocity distribution is Maxwellian and the exponent diverges, σ → ∞ as d → ∞. In this
limit, the second integral in equation (11) is negligible as it vanishes exponentially with the
dimension. The first integral can be evaluated by taking the limits d → ∞ and µ → 0, with
z = µd/2 being finite. Then, the integration measure is transformed Dµ → (πz)−1/2e−z dz,
and equation (11) becomes 1−ε(1−ε)u = ∫ ∞

0 dz (πz)−1/2e−[1+(1−ε2)u]z where u = σ/d−1.
Performing the integration yields 1−ε(1−ε)u = [1+(1−ε2)u]−1/2, from which we find u and

σ � d
1 + (3/2)ε − ε3 − ε1/2(1 + (5/4)ε)1/2

ε(1 − ε2)
, (14)

as d → ∞. In general, σ ∝ d , and therefore, the algebraic decay becomes sharper as
the dimension increases. The exponent σ(d, ε) increases monotonically with increasing di-
mension, and additionally, it increases monotonically with decreasing ε (see figure 1). Both
features are intuitive as they mirror the monotonic dependence of the energy dissipation rate
λ = 2ε(1 − ε)/d on d and ε. Hence, the completely inelastic case provides a lower bound for

3 Every initial velocity distribution evolves towards the Maxwellian distribution if d > 1 and ε = 0; for d = 1, there
is no relaxation in the elastic case.
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Figure 1. The exact exponent σ , obtained from equation (11), versus the dissipation parameter ε.
The exponent was scaled by the dimension d. Also shown is the limiting large-dimension
expression (14).

the exponent, σ(d, ε) � σ(d, ε = 1/2) with σ(d, 1/2) = 6.287 53, 8.329 37, for d = 2, 3,
respectively. The former value should be compared with σ ≈ 5, obtained from numerical sim-
ulations [18]. The algebraic tails are characterized by unusually large exponents which may
be difficult to measure accurately in practice (for typical granular particles ε ≈ 0.1 yielding
σ ≈ 30). Figure 1 also shows that the quantity σ/d weakly depends upon the dimension, and
the large-d limit (14) provides a useful approximation.

Thus far, we have discussed only freely cooling systems where the energy decreases
indefinitely. In typical experimental situations, however, the system is supplied with energy
to balance the energy dissipation [10, 11]. Theoretically, it is natural to consider white-noise
forcing [9], i.e. coupling to a thermal heat bath which leads to a nonequilibrium steady state.
Specifically, we assume that in addition to changes due to collisions, velocities may also
change due to an external forcing: (dvj/dt)|heat = ξj with j = 1, . . . , d. We use standard
uncorrelated white noise 〈ξi(t)ξj (t ′)〉 = 2Dδij δ(t − t ′) with a zero average 〈ξj 〉 = 0. The
temperature rate equation is modified by the additional source term (d/dt)T + λT 3/2 = 2D,
and the system approaches a steady state, T∞ = (2D/λ)2/3. The relaxation toward this state
is exponential, |T∞ − T | ∼ e−t/τ .

Uncorrelated white-noise forcing amounts to diffusion in velocity space, and equation (4)
is modified as follows: (1/

√
T )(∂/∂t) → (1/

√
T )(∂/∂t) + Dk2. In the steady state, the

Fourier transform, F(k, t = ∞) ≡ 0(y) with y = Dk2, obeys

(1 + y)0(y) = 〈0(ξy)0(ηy)〉, (15)

where integration with respect to the measure Dµ is denoted by 〈f 〉 = ∫ 1
0 Dµf (µ).

Equation (15) is solved recursively by employing the cumulant expansion 0(y) =
exp

[∑
n�1(−y)nFn

]
. Writing 1 + y = exp

[∑
n�1(−y)n/n

]
, we recast equation (15) into

1 =
〈
exp

[ ∞∑
n=1

(−y)n(n−1 −Gn)

]〉
, (16)

where Gn = Fn(1 − ξn − ηn). The desired cumulants Fn are obtained by solving for 〈Gn〉
recursively and then using Fn = 〈Gn〉/〈1 − ξn − ηn〉. In one dimension 〈µn〉 = 1 and
one immediately obtains 〈Gn〉 = n−1 [17]. In higher dimensions, the averages acquire non-
trivial dependence on4 n though the qualitative nature of the solution remains the same since

4 The first three averages are 〈G1〉 = 1, 〈G2〉 = (1/2)〈G2
1〉 and 〈G3〉 = 〈G1G2〉 − (1/6)〈G3

1〉.
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〈Gn〉 and hence the cumulants Fn (as well as the moments of the distribution) are positive.
This implies the following small-k behaviour of the Fourier transform at the steady state:
lnF∞(k) ∼ −(k/k0)

2. This behaviour agrees with the prediction of [23] derived via a small-ε
expansion, but differs from the stretched exponential behaviour exp(−v3/2) found for the driven
inelastic hard sphere gas [9].

In summary, we have studied inelastic gases within the framework of the Boltzmann
equation with a uniform collision kernel. In the freely evolving case, we have shown
analytically that the density of high-energy particles is suppressed algebraically. The algebraic
tails are characterized by remarkably large exponents, and may be hard to distinguish from
(stretched) exponential tails. Our results, combined with previous kinetic theory studies
which find exponential, stretched exponential, and Gaussian tails, indicate that the extremal
characteristics can be very sensitive to parameters such as the restitution coefficient, and the
dimension [8, 9, 13]. On the other hand, our results in the forced case support the near-
Maxwellian assumptions typically used to obtain macroscopic transport coefficients from
kinetic theory [14].

We thank A Baldassari and M H Ernst for fruitful correspondence, and G D Doolen and
S Redner for useful comments. This research was supported by DOE (W-7405-ENG-36) and
NSF(DMR9978902).
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[1] Pöschel T and Luding S (ed) 2000 Granular Gases (Berlin: Springer)
[2] Bernu B and Mazighi R 1990 J. Phys. A: Math. Gen. 23 5745
[3] McNamara S and Young W R 1992 Phys. Fluids A 4 496
[4] Goldhirsch I and Zanetti G 1993 Phys. Rev. Lett. 73 1619
[5] Soto R and Mareschal M 2001 Phys. Rev. E 63 041303
[6] Ben-Naim E, Chen S Y, Doolen G D and Redner S 1999 Phys. Rev. Lett. 83 4069
[7] Samadani A, Mahadevan L and Kudrolli A 2001 Preprint cond-mat/0110427
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